Article ID Journal Published Year Pages File Type
2480556 European Journal of Pharmaceutical Sciences 2014 11 Pages PDF
Abstract

Gene transfer using non-viral vectors is a promising approach for the safe delivery of nucleic acid therapeutics. In this study, we investigate a lipid-based system for targeted gene delivery to malignant cells overexpressing the folate receptor (FR). Cationic liposomes were formulated with and without the targeting ligand folate conjugated to distearoylphosphatidyl ethanolamine polyethylene glycol 2000 (DSPE-PEG2000), the novel cytofectin 3β[N(N1,N1-dimethlaminopropylsuccinamidoethane)-carbamoyl]cholesterol (SGO4), which contains a 13 atom, 15 Å spacer element, and the helper lipid, dioleoylphosphatidylethanolamine (DOPE). Physicochemical parameters of the liposomes and lipoplexes were obtained by zeta sizing, zeta potential measurement and cryo-TEM. DNA-binding and protection capabilities of liposomes were confirmed by gel retardation assays, EtBr intercalation and nuclease protection assays. The complexes were assessed in an in vitro system for their effect on cell viability using the MTT assay, and gene transfection activity using the luciferase assay in three cell lines; HEK293 (FR-negative), HeLa (FR+-positive), KB (FR++-positive). Low cytotoxicities were observed in all cell lines, while transgene activity promoted by folate-tagged lipoplexes in FR-positive lines was tenfold greater than that by untargeted constructs and cell entry by folate complexes was demonstrably by FR mediation. These liposome formulations have the design capacity for in vivo application and may therefore be promising candidates for further development.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (76 K)Download as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , ,