Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2481098 | European Journal of Pharmaceutical Sciences | 2012 | 12 Pages |
Abstract
Glucagon like peptide 1 (GLP-1), a blood glucose homeostasis modulating incretin, has been proposed for the treatment of type 2 diabetes mellitus (T2DM). However, native GLP-1 pharmacokinetics reveals low bioavailability due to degradation by the ubiquitous dipeptydil peptidase IV (DPP-IV) endoprotease. In this study, the glucosamine-based polymer chitosan was used as a cationic polymer-based in vitro delivery system for GLP-1, DPP-IV resistant GLP-1 analogues and siRNA targeting DPP-IV mRNA. We found chitosans to form spherical nanocomplexes with these nucleic acids, generating two distinct non-overlapping size ranges of 141-283Â nm and 68-129Â nm for plasmid and siRNA, respectively. The low molecular weight high DDA chitosan 92-10-5 (degree of deacetylation, molecular weight and N:P ratio (DDA-Mn-N:P)) showed the highest plasmid DNA transfection efficiency in HepG2 and Caco-2 cell lines when compared to 80-10-10 and 80-80-5 chitosans. Recombinant native GLP-1 protein levels in media of transfected cells reached 23Â ng/L while our DPP-IV resistant analogues resulted in a fivefold increase of GLP-1 protein levels (115Â ng/L) relative to native GLP-1, and equivalent to the Lipofectamine positive control. We also found that all chitosan-DPP-IV siRNA nanocomplexes were capable of DPP-IV silencing, with 92-10-5 being significantly more effective in abrogating enzymatic activity of DPP-IV in media of silenced cells, and with no apparent cytotoxicity. These results indicate that specific chitosan formulations may be effectively used for the delivery of plasmid DNA and siRNA in a combination therapy of type 2 diabetes.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
Myriam Jean, Mohamad Alameh, Diogo De Jesus, Marc Thibault, Marc Lavertu, Vincent Darras, Monica Nelea, Michael D. Buschmann, Abderrazzak Merzouki,