Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2483487 | Journal of Drug Delivery Science and Technology | 2013 | 7 Pages |
Novel types of highly swelling hydrogels (superabsorbent) were prepared by grafting crosslinked poly acrylic acid-co-2-hydroxyethylmetacrylate (PAA-co-HEMA) chains onto starch through a free radical polymerization method. The effect of grafting variables (i.e., concentration of methylenebisacrylamide (MBA), acrylic acid/2-hydroxy methymetacrylate (AA/HEMA) weight ratio, ammonium persulfate (APS), starch, neutralization percent, were systematically optimized to achieve a hydrogel with a maximum swelling capacity. The superabsorbent (SAP) formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The controlled-release behavior of diclofenac sodium (DS) from SAP was investigated and showed that the release profiles of DS from superabsorbent polymer were slow (less than 6 %) in simulated gastric fluid (SGF, pH 1.6) over 3 h, but nearly all of the initial drug content was released in simulated intestinal fluid (SIF, pH 7.4) within 8 h after changing media. Overall, the results demonstrated that biodegradable superabsorbent could successfully deliver a drug to the intestine without losing the drug in the stomach, and could be potential candidates for an orally administrated drug delivery system.