Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2484363 | Journal of Pharmaceutical Sciences | 2016 | 10 Pages |
Abstract
Molecularly targeted drug delivery systems represent a novel therapeutic strategy in the treatment of different cancers. In the present study, we have developed gemcitabine (GEM)-loaded AS1411 aptamer surface-decorated polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersome (Apt-GEM-NP) to target nucleolin-overexpressing non-small cell lung cancer (NSCLC; A549). The prepared Apt-GEM-NP showed average particle size of 128 ± 5.23 nm and spherical morphology with encapsulation efficiency and loading content of 95.32 ± 2.37% and 8.61 ± 0.27%, respectively. Apt-GEM-NP exhibited a controlled release pattern. A sustained release of drug in physiological conditions will greatly improve the chemotherapeutic efficiency of a system. Enhanced cellular uptake and the cytotoxicity of aptamer-conjugated nanoparticles (NPs) in A549 cancer cells obviously verified nucleolin-mediated receptor-based active targeting. Nucleolin-mediated internalization of the targeted polymeric NP was further confirmed by flow cytometry and fluorescence microscopy. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay clearly showed the enhanced cell proliferation inhibitory effect of AS1411-conjugated NP on account of the selective delivery of GEM to the nucleolin-overexpressing cancer cells. Our results showed that AS1411 aptamer conjugation on the surface of NP could be a potential treatment strategy for A549 as a nucleolin-overexpressing cell line. This suggests that AS1411-GEM-NPs could be potentially used for the treatment of NSCLC.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
Mona Alibolandi, Mohammad Ramezani, Khalil Abnous, Farzin Hadizadeh,