Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2484580 | Journal of Pharmaceutical Sciences | 2016 | 4 Pages |
Abstract
We investigated the effect of cytochrome P450 (CYP) 2C9 polymorphism on the inhibition of methylhydroxylation activity of tolbutamide, a typical CYP2C9 substrate, by triazole antifungal agents, fluconazole and voriconazole. Although the Michaelis constants (Km), maximal velocities (Vmax), and Vmax/Km values for CYP2C9.1 (wild type) and CYP2C9.2 (Arg144Cys) were similar and CYP2C9.3 (Ile359Leu) had a higher Km and a lower Vmax than CYP2C9.1 and CYP2C9.2, the inhibition constants of fluconazole and voriconazole against CYP2C9.2 were lower than that against CYP2C9.1 and CYP2C9.3. These results suggest that more careful administration of azole antifungals to patients with the CYP2C9*2 allele might be required because of the strong inhibitory effects.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
Toshiro Niwa, Tomomi Hata,