Article ID Journal Published Year Pages File Type
2485034 Journal of Pharmaceutical Sciences 2013 11 Pages PDF
Abstract
Poly(2-hydroxyethyl methacrylate-methacrylic acid-ethylene glycol dimethacrylate) hydrogels loaded with silica shell cross-linked methoxy(polyethylene glycol)-block-polycaprolactone (MePEG-b-PCL) micelles with rod-like morphology were prepared as a potential soft contact lens material for the sustained release of ocular drugs. The silica shell cross-linked methoxy micelles (SSCMs) comprising a polycaprolactone core surrounded by a silica shell were synthesized and their size, morphology, stability, and drug release kinetics were evaluated. The relationships between the composition of the SSCM-loaded poly(2-hydroxyethyl methacrylate) (pHEMA)-based hydrogels and their transparency, surface wettability, and equilibrium water content were determined. Scanning electron microscopy (SEM) images of SSCM-hydrogel systems showed the presence of intact SSCMs within the hydrogel matrix. Dexamethasone acetate (DMSA), a hydrophobic ophthalmic drug, was loaded into the SSCMs prior to their incorporation into the hydrogels. In vitro release of DMSA from the SSCM-hydrogels, with varying drug loading levels, was observed for up to 30 days. Overall, the incorporation of rod-like SSCMs within pHEMA-based hydrogels provided sustained release over prolonged periods while maintaining optical transparency. This delivery system may be suitable for use as a therapeutic soft contact lens material.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , ,