Article ID Journal Published Year Pages File Type
2485236 Journal of Pharmaceutical Sciences 2012 6 Pages PDF
Abstract
Removal of hydrogen peroxide by delivering catalase to the vicinity of metastasizing tumor cells is a promising approach for inhibiting tumor metastasis. To inhibit bone metastasis, catalase was conjugated with 3,5-di(ethylamino-2,2-bisphosphono)benzoic acid (Bip), a derivative of bone-seeking bisphosphonates, polyethylene glycol (PEG), or both. Bip-conjugated catalase derivatives, that is, catalase-Bip and PEG-catalase-Bip, exhibited a higher affinity for bone matrix as compared with their counterparts without Bip. The tissue distribution of 111In-labeled catalase derivatives indicated that the accumulation of radioactivity in bones was increased by conjugation of either Bip or PEG with catalase. An experimental bone metastasis model was developed by injecting male C57BL/6 mice with murine melanoma B16-BL6/Luc cells, which stably express firefly luciferase into left ventricle. Repeated injections of catalase to tumor-bearing mice had no significant effect on the number of melanoma cells in tibiae and femurs, whereas injections of catalase-Bip, PEG-catalase, or PEG-catalase-Bip significantly reduced the number. These results indicate that targeted delivery of catalase to the bones can be achieved by conjugating the enzyme with either Bip or PEG, and this delivery is effective in inhibiting the bone metastasis of tumor cells. © 2011 Wiley Periodicals, Inc. and the American Pharmacists Association.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , ,