Article ID Journal Published Year Pages File Type
2485916 Journal of Pharmaceutical Sciences 2010 8 Pages PDF
Abstract
System L, which is encoded by LAT1 and LAT2, is an amino acid transport system that transports neutral amino acids, including several essential amino acids in an Na+-independent manner. Due to its broad substrate selectivity, system L has been proposed to mediate the transport of amino-acid-related drugs across the blood-tissue barriers. We characterized L-leucine transport and its corresponding transporter in a human retinal pigment epithelial cell line (ARPE-19 cells) as an in vitro model of the outer blood-retinal barrier. [3H]L-leucine uptake by ARPE-19 cells took place in an Na+-, Cl−-independent and saturable manner with Km values of 8.71 and 220 µM. This process was more potently cis-inhibited by substrates of LAT1 than those of LAT2. [3H]L-leucine efflux from ARPE-19 cells was trans-stimulated by substrates of LAT1 and LAT2 through the obligatory exchange mechanism of system L. Although RT-PCR analysis demonstrated that LAT1 and LAT2 mRNA are expressed in ARPE-19 cells, the LAT1 mRNA concentration is 42-fold higher than that of LAT2. Moreover, immunoblot analysis demonstrated that LAT1 is expressed in ARPE-19 cells. In conclusion, although the transport function of LAT1 is greater than that of LAT2, LAT1 and LAT2 are involved in L-leucine transport in ARPE-19 cells. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2475-2482, 2010
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , ,