Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2486449 | Journal of Pharmaceutical Sciences | 2011 | 13 Pages |
Abstract
This study constructed a series of novel micelles based on star-shaped amphiphilic copolymers (sPEC/CDs), and aimed to confirm the important role poly(ε-caprolactone) (PCL) segments played to improve the various properties of micelles. sPEC/CDs, consisting of β-cyclodextrin (β-CD) as a core and monomethoxy poly(ethylene glycol) (mPEG) and PCL diblock copolymers as arms, were synthesized by arm-first method. The critical micelle concentrations (CMC) of sPEC/CDs were determined by fluorescence spectrophotometry using pyrene as a probe. 3-(4, 5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide and flow cytometry were used to detect drug cytotoxicity and cellular uptake of the doxorubicin-loaded micelles. Rhodamine-123 cellular accumulation was examined to evaluate the polymer action to P-glycoprotein. It was revealed that, once PCL segment was inserted between β-CD and mPEG, the CMC can be significantly decreased, the drug loading capability greatly improved, and the drug resistance of MCF-7/ADR cells effectively reversed. These findings suggest that sPEC/CDs own potential superiority for cancer therapy as drug carriers.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
Liyan Qiu, Lu Zhang, Cheng Zheng, Rongjuan Wang,