Article ID Journal Published Year Pages File Type
2486530 Journal of Pharmaceutical Sciences 2005 13 Pages PDF
Abstract
Effect of variation in the ambient moisture levels on the compaction behavior of a 10% acetaminophen (APAP) powder blend in microcrystalline cellulose (MCC) powder was studied by comparing the physical and mechanical properties of ribbons prepared by roller compaction with those of simulated ribbons, i.e., tablets prepared under uni-axial compression. Relative density, moisture content, tensile strength, and Young's modulus were used as key compact properties for comparison. Moisture was found to facilitate the particle rearrangement of both, the APAP and the MCC particles, as well as the deformation of the MCC particles. The tensile strength of the simulated ribbons also showed an increase with increasing moisture content. An interesting observation was that the tensile strength of the roller compacted samples first increased and then decreased with increasing moisture content. Variation in the ambient moisture during roller compaction was also found to influence the characteristics of tablets produced from the granules obtained post-milling the ribbons. A method to study this influence is also reported. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , ,