Article ID Journal Published Year Pages File Type
2486686 Journal of Pharmaceutical Sciences 2011 12 Pages PDF
Abstract
The challenge of designing a delayed-release oral dosage form is significantly increased when the drug substance is poorly water soluble. This manuscript describes the design and characterization of a novel controlled-release film-coated tablet for the pH-triggered delayed and complete release of poorly water-soluble weak base drugs. Delivery of weak bases is specifically highlighted with the use of dipyridamole and prazosin as model compounds. Tailored delayed release is achieved with a combination of an insoluble but semipermeable polymer and an enteric polymer, such as cellulose acetate and hydroxypropyl cellulose phthalate, respectively, as coatings. The extent of the time lag prior to complete release depends on the film-coating composition and thickness. Complete release is achieved by the addition of a cyclodextrin, namely SBE7M-β-CD with or without a pH modifier added to the tablet core to ensure complete solubilization and release of the drug substance. The film-coating properties allow the complex formation/solubilization to occur in situ. Additionally, the drug release rate can be modulated on the basis of the cyclodextrin to drug molar ratio. This approach offers a platform technology for delayed release of potent but poorly soluble drugs and the release can be modulated by adjusting the film-coating composition and thickness and/or the cyclodextrin and pH modifier, if necessary.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , ,