Article ID Journal Published Year Pages File Type
2486688 Journal of Pharmaceutical Sciences 2011 11 Pages PDF
Abstract
Effects of 1.28 nmol/kg doxercalciferol [1α(OH)D2], a synthetic vitamin D2 analog that undergoes metabolic activation to 1α,25-dihydroxyvitamin D2, the naturally occurring, biologically active form of vitamin D2, on rat transporters and enzymes were compared with those of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3, active form of vitamin D3; 4.8 and 6.4 nmol/kg] given on alternate days intraperitoneally for 8 days. Changes were mostly confined to the intestine and kidney where the vitamin D receptor (VDR) was highly expressed: increased intestinal Cyp24 and Cyp3a1 messenger RNA (mRNA) and a modest elevation of apical sodium-dependent bile salt transporter (Asbt) and P-glycoprotein (P-gp) protein; increased renal VDR, Cyp24, Cyp3a9, Mdr1a, and Asbt mRNA, as well as Asbt and P-gp protein expression; and decreased renal PepT1 and Oat1 mRNA expression. In comparison, 1α(OH)D2 treatment exerted a greater effect than 1,25(OH)2D3 on Cyp3a and Cyp24 mRNA. However, the farnesoid X receptor -related repressive effects on liver Cyp7a1 were absent because intestinal Asbt, FGF15 and portal bile acid concentrations were unchanged. Rats on the alternate day regimen showed milder changes and lessened signs of hypercalcemia and weight loss compared with rats receiving daily injections (similar or greater amounts of 0.64-2.56 nmol/kg daily ×4) described in previous reports, showing that the protracted pretreatment regimen was associated with milder inductive and lesser toxic effects in vivo.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , ,