Article ID Journal Published Year Pages File Type
2486962 Journal of Pharmaceutical Sciences 2009 11 Pages PDF
Abstract
Human α1-acid glycoprotein (AGP), a major carrier of many basic drugs in circulation, consists of at least two genetic variants, namely A and F1*S variant. Interestingly, the variants of AGP have different drug-binding properties. The purpose of this study was to identify the amino acid residues that are responsible for the selectivity of drug binding to genetic variants of AGP using site-directed mutagenesis. First, we screened amino acid residues in the region proximal to position 100 that are involved in binding of warfarin and dipyridamole, which are F1*S-specific ligands, and of propafenone, which is an A-specific ligand, using ultrafiltration. In the F1*S variant, His97, His100, and Trp122 were involved in either warfarin- or dipyridamole-binding, while Glu92, His100, and Trp122 participated in the binding of propafenone in the A variant. Exchange of the residue at position 92 between AGP variants reversed the relative strength of propafenone binding to the two variants, but had a markedly different effect on binding of warfarin and dipyridamole. These findings indicate that the amino acid residue at position 92 plays a significant role in drug-binding selectivity in AGP variants, especially for drugs that preferentially bind to the A variant. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4316-4326, 2009
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , , , , , , ,