Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2487213 | Journal of Pharmaceutical Sciences | 2009 | 7 Pages |
Abstract
Vector-based RNA interference (RNAi) has attracted great interest, because of its more prolonged gene silencing effect compared with small interfering RNA (siRNA). However, the intensity and duration of vector-based RNAi effect has received little attention. In this study, the gene silencing kinetics of short hairpin RNA (shRNA)-expressing plasmid DNA (pDNA) driven by U6, H1 or tRNA promoter (pU6-shLuc, pH1-shLuc, and ptRNA-shLuc) was studied in melanoma cells expressing firefly luciferase. A bootstrap method-based moment analysis was performed to statistically and quantitatively evaluate the profile of gene silencing. The analysis showed that pU6-shLuc induced a significantly greater and longer gene silencing than that produced by other promoter-driven shRNA expression vectors. In addition, it was found that pU6-shLuc was at least 100-fold more potent in gene silencing than siRNA targeting the same gene on a numerical basis. These statistical considerations demonstrated that U6 promoter-driven shRNA expressing pDNA is the most effective in inducing gene silencing effect as far as the intensity and duration of RNAi effect is concerned.
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
Yuki Takahashi, Kiyoshi Yamaoka, Makiya Nishikawa, Yoshinobu Takakura,