Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2487303 | Journal of Pharmaceutical Sciences | 2005 | 12 Pages |
Abstract
The metabolic fate of azimilide in man is unusual as it undergoes a cleavage in vivo resulting in the formation of two classes of structurally distinct metabolites. During a metabolite profiling study conducted in human volunteers to assess the contribution of all pathways to the clearance of 14C-azimilide, greater than 82% of radioactivity was recovered in urine (49%-58%) and feces (33%). Urine, feces, and plasma were profiled for metabolites. A cleaved metabolite, 4-chloro-2-phenyl furoic acid was present at high concentration in plasma (metabolite/parent AUC ratio approx. 4), while other plasma metabolites, azimilide N-oxide (metabolite/parent AUC ratio 0.001), and a cleaved hydantoin metabolite (metabolite/parent AUC ratio = 0.3) were present at lower concentrations than azimilide. In urine, the cleaved metabolites were the major metabolites, (> 35% of the dose) along with phenols (as conjugates, 7%-8%), azimilide N-oxide (4%-10%), a butanoic acid metabolite (2%-3%), and desmethyl azimilide (2%). A limited investigation of fecal metabolites indicated that azimilide (3%-5%), desmethyl azimilide (1%-3%), and the butanoic acid metabolite (< 1%) were present. Contributing pathways for metabolism of azimilide, identified through in vitro and in-vivo studies, were CYPs 1A1 (est. 28%), 3A4/5 (est. 20%), 2D6 (< 1%), FMO (est. 14%), and cleavage (35%). Enzyme(s) involved in the cleavage of azimilide were not identified. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
P. Riley, P.C. Figary, J.R. Entwisle, A.L. Roe, G.A. Thompson, R. Ohashi, N. Ohashi, T.J. Moorehead,