Article ID Journal Published Year Pages File Type
2500870 International Journal of Pharmaceutics 2016 12 Pages PDF
Abstract

This study was designed to use superparamagnetic iron oxide nanoparticles (SPIONs) as evaluating tools to study monocyte-derived macrophages (MDM)-mediated delivery of small molecular agents into the diseased brains. MDM were tested with different-configured SPIONs at selected concentrations for their impacts on carrier cells’ physiological and migratory properties, which were found to depend largely on particle size, coating, and treatment concentrations. SHP30, a SPION of 30-nm core size with oleic acids plus amphiphilic polymer coating, was identified to have high cellular uptake efficiency and cause little cytotoxic effects on MDM. At lower incubation dose (25 μg/mL), few alteration was observed in carrier cells’ physiological and in vivo migratory functions, as tested in a lipopolysaccharide-induced acute neuroinflammation mouse model. Nevertheless, significant increase in monocyte-to-macrophage differentiation, and decrease in in vivo carrier MDM inflamed-brain homing ability were found in groups treated with a higher dose of SHP30 at 100 μg/mL. Overall, our results have identified MDM treatment at 25 μg/mL SHP30 resulted in little functional changes, provided valuable parameters for using SPIONs as evaluating tools to study MDM-mediated therapeutics carriage and delivery, and supported the concepts of using monocytes-macrophages as cellular vehicles to transport small molecular agents to the brain.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (246 K)Download as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , , ,