Article ID Journal Published Year Pages File Type
2501608 International Journal of Pharmaceutics 2015 11 Pages PDF
Abstract

The development of novel and efficient delivery systems is often the limiting step in fields such as antisense therapies. In this context, poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles have been obtained by a versatile and simple technology based on nano-emulsion templating and low-energy emulsification methods, performed in mild conditions, providing good size control. O/W polymeric nano-emulsions were prepared by the phase inversion composition method at 25 °C using the aqueous solution/polysorbate80/[4 wt% PLGA in ethyl acetate] system. Nano-emulsions formed at oil-to-surfactant (O/S) ratios between 10/90–90/10 and aqueous contents above 70 wt%. Nano-emulsion with 90 wt% of aqueous solution and O/S ratio of 70/30 was chosen for further studies, since they showed the appropriate characteristics to be used as nanoparticle template: hydrodynamic radii lower than 50 nm and enough kinetic stability. Nanoparticles, prepared from nano-emulsions by solvent evaporation, showed spherical shape, sizes about 40 nm, negative surface charges and high stability. The as-prepared nanoparticles were functionalized with carbosilane cationic dendrons through a carbodiimide-mediated reaction achieving positively charged surfaces. Antisense oligonucleotides were electrostatically attached to nanoparticles surface to perform gene-silencing studies. These complexes were non-haemolytic and non-cytotoxic at the concentrations required. The ability of the complexes to impart cellular uptake was also promising. Therefore, these novel nanoparticulate complexes might be considered as potential non-viral carriers in antisense therapy.

Graphical abstractSchematic representation of the complete process of nanoparticle production from nano-emulsion and its surface functionalization to be used as non-viral gene delivery vectors.Figure optionsDownload full-size imageDownload high-quality image (215 K)Download as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , , , , , , ,