Article ID Journal Published Year Pages File Type
2502023 International Journal of Pharmaceutics 2014 11 Pages PDF
Abstract

The endothelium represents an attractive therapeutic target due to its pivotal role in many diseases including chronic inflammation and cancer. Small interfering RNAs (siRNAs) specifically interfere with the expression of target genes and are considered an important new class of therapeutics. However, due to their size and charge, siRNAs do not spontaneously enter unperturbed endothelial cells (EC). To overcome this problem, we developed novel lipoplexes for siRNA delivery that are based on the cationic amphiphilic lipid SAINT-C18. Antibodies recognizing disease induced cell adhesion molecules were employed to create cell specificity resulting in so-called antibody-SAINTargs. To improve particle stability, antibody-SAINTargs were further optimized for EC-specific siRNA-mediated gene silencing by addition of polyethylene glycol (PEG). Although PEGylated antibody-SAINTargs maintained specificity, they lost their siRNA delivery capacity. Coupling of antibodies to the distal end of PEG (so-called antibody-SAINTPEGargs), resulted in anti-E-selectin- and anti-vascular cell adhesion molecule (VCAM)-1-SAINTPEGarg that preserved their antigen recognition and their capability to specifically deliver siRNA into inflammation-activated primary endothelial cells. The enhanced uptake of siRNA by antibody-SAINTPEGargs was followed by improved silencing of the target gene VE-cadherin, demonstrating that antibody-SAINTPEGargs were capable of functionally delivering siRNA into primary endothelial cells originating from different vascular beds. In conclusion, the newly developed, physicochemically stable, and EC-specific siRNA carrying antibody-SAINTPEGargs selectively down-regulate target genes in primary endothelial cells that are generally difficult to transfect.

Graphical abstractPEGylated anti-E-selectin and anti-VCAM-1-SAINTPEGarg are effective devices for siRNA delivery into the inflammation-activated primary endothelial cells (ECs).Figure optionsDownload full-size imageDownload high-quality image (134 K)Download as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , , , , , ,