Article ID Journal Published Year Pages File Type
2502675 International Journal of Pharmaceutics 2013 9 Pages PDF
Abstract

The aim of this study was to develop a responsive disintegration test apparatus that is particularly suitable for rapidly disintegrating tablets (RDTs). The designed RDT disintegration apparatus consisted of disintegration compartment, stereomicroscope and high speed video camera. Computational fluid dynamics (CFD) was used to simulate 3 different designs of the compartment and to predict velocity and pressure patterns inside the compartment. The CFD preprocessor established the compartment models and the CFD solver determined the numerical solutions of the governing equations that described disintegration medium flow. Simulation was validated by good agreement between CFD and experimental results. Based on the results, the most suitable disintegration compartment was selected. Six types of commercial RDTs were used and disintegration times of these tablets were determined using the designed RDT disintegration apparatus and the USP disintegration apparatus. The results obtained using the designed apparatus correlated well to those obtained by the USP apparatus. Thus, the applied CFD approach had the potential to predict the fluid hydrodynamics for the design of optimal disintegration apparatus. The designed visiometric liquid jet-mediated disintegration apparatus for RDT provided efficient and precise determination of very short disintegration times of rapidly disintegrating dosage forms.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (178 K)Download as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , ,