Article ID Journal Published Year Pages File Type
2502963 International Journal of Pharmaceutics 2012 7 Pages PDF
Abstract

Matrix metalloproteinases (MMPs) overexpression plays a critical role in cancer invasion and metastasis. We utilized this key feature of tumor microenvironment to develop a disease-stimuli triggered drug delivery system. Poly(acrylic acid) hydrogels were synthesized by UV polymerization and pendant MMP-2 sensitive peptides (Gly-Pro-Leu-Gly-Val-Arg-Gly-Lys) conjugated throughout using EDC/sulfo-NHS chemistry. There were significantly more peptides released in the presence of MMP-2 compared with the control groups. The released peptide fragments were analyzed by HPLC and MALDI-MS and confirmed to be the expected fragments. In order to avoid nonspecific release of nonconjugated (i.e. unreacted) peptides, a novel method of electrophoretic washing was developed disrupting the strong electrostatic interactions between the peptides and the pendant groups of the hydrogel. After electrophoresis, the nonspecific peptide release in the absence of MMP-2 was minimized. This newly developed purification system significantly improved the control of release to be in response of the magnitude of the stimuli, i.e. MMP. Specifically, peptides were released proportionally to the concentration of MMP-2 present. Now that many of the design parameters have been examined, anticancer drugs will be conjugated to the MMP sensitive peptide linkers with the goal of implantation in a tumor void releasing anticancer reagent in response to elevated level of MMPs.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (225 K)Download as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, ,