Article ID Journal Published Year Pages File Type
2503775 International Journal of Pharmaceutics 2011 10 Pages PDF
Abstract

Three novel amino acid based anionic amphiphilic copolymers poly(sodium N-acryloyl-l-valinate-co-alkylacrylamide) (where, alkyl = octyl and dodecyl) with either 9 or 16 mol% hydrophobic substitution were synthesized. These hydrophobically modified polyelectrolytes (HMPs), above a critical concentration, self-assemble in aqueous solution through inter-chain hydrophobic aggregation, forming micelle-like aggregates having hydrodynamic diameter in the range of 50–200 nm. The HMPs were found to undergo conformational changes with the change in solution pH, electrolyte and additive concentration, and temperature. The polymeric micelles were observed to be stable under biological conditions (pH 7.4, [NaCl] = 150 mM and temperature (37 °C)). The solubilization capacity of the polymeric micelles for six important non-steroidal anti-inflammatory drugs of different hydrophobicity was evaluated. Depending upon the hydrophobicity the solubilities of the drugs were observed to increase ca. 2–10 times in the presence of 1.0 g/L copolymers. The in vitro release kinetics of the loaded drug was studied under physiological pH. To explore their potential application in pharmaceutical industries hemocompatibility and cytotoxicity studies were carried out using hemolytic and MTT assay, respectively. The anionic HMPs were found to be not directly toxic to mammalian cells.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , ,