Article ID Journal Published Year Pages File Type
2503838 International Journal of Pharmaceutics 2010 10 Pages PDF
Abstract

Histone deacetylase (HDAC) inhibitors (HDACi) of the class I trichostatin A (TSA), CG1521 (CG), and PXD101 (PXD) were incorporated at a high rate (∼1 mM) in liposomes made of egg phosphatidylcholine/cholesterol/distearoylphosphoethanolamine-polyethylenglycol2000 (64:30:6). Physicochemical parameters (size, zeta potential, loading, stability, release kinetics) of these HDACi-loaded pegylated liposomes were optimized and their cytotoxicity (MTT test) was measured in MCF-7, T47-D, MDA-MB-231 and SkBr3 breast cancer cell lines. In MCF-7 cells, TSA and PXD were efficient inducers of proteasome-mediated estradiol receptor α degradation and they both affected estradiol-induced transcription (TSA > PXD) contrary to CG. Moreover, TSA most efficiently altered breast cancer cell viability as compared to the free drug, CG-liposomes being the weakest, while unloaded liposomes had nearly no cytotoxicity. Pegylated liposomes loaded with TSA or PXD remained stable in size, charge and biological activity for one month when stored at 4 °C. All HDACi-loaded liposomes released slowly the encapsulated drug in vitro, CG-loaded liposomes showed the slowest release kinetic. These formulations could improve the efficacy of HDACi not only in breast cancers but also in other solid tumors because most of these drugs are poor water soluble and unstable in vivo, and their administration remains a challenge.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , , , ,