Article ID Journal Published Year Pages File Type
2505727 International Journal of Pharmaceutics 2008 8 Pages PDF
Abstract

The objective of this study was to investigate the passive skin penetration of lipophilic model agents encapsulated within tyrosine-derived nanospheres. The nanospheres were formed by the self-assembly of a biodegradable, non-cytotoxic ABA triblock copolymer. The A-blocks were poly(ethylene glycol) and the hydrophobic B-blocks were oligomers of suberic acid and desaminotyrosyl-tyrosine alkyl esters. These nanospheres had an average hydrodynamic diameter of about 50 nm and formed strong complexes with fluorescent dyes, 5-dodecanoylaminofluorescein (DAF, Log D = 7.54) and Nile Red (NR, Log D = 3.10). These dyes have been used here as models for lipophilic drugs. The distribution of topically applied nanosphere-dye formulations was studied in human cadaver skin using cryosectioning and fluorescence microscopy. Permeation analysis (quantified fluorescence) over a 24 h period revealed that the nanospheres delivered nine times more NR to the lower dermis than a control formulation using propylene glycol. For DAF, the nanosphere formulation was 2.5 times more effective than the propylene glycol based control formulation. We conclude that tyrosine-derived nanospheres facilitate the transport of lipophilic substances to deeper layers of the skin, and hence may be useful in topical delivery applications.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , , , ,