Article ID Journal Published Year Pages File Type
2505890 International Journal of Pharmaceutics 2007 10 Pages PDF
Abstract

Permeability of the anti-human immunodeficiency virus (HIV) agents, including stavudine (D4T), delavirdine (DLV), and saquinavir (SQV), across the in vitro blood–brain barrier (BBB) was studied. Here, the anti-HIV agents were incorporated with polybutylcyanoacrylate (PBCA) nanoparticles (NPs), methylmethacrylate-sulfopropylmethacrylate (MMA-SPM) NPs, and solid lipid nanoparticles (SLNs). Transport of the anti-HIV agents across BBB is a key factor in their applications to the therapy of the acquired immunodeficiency syndrome (AIDS). Experimental results revealed that the drug order of the loading efficiency (LE) on PBCA and MMA-SPM was D4T > DLV > SQV. For the entrapment efficiency (EE) in SLNs, this order was reversed. Also, LE of D4T on MMA-SPM was larger than that on PBCA; however, the reverse was true for DLV and SQV. As the particle size increased, LE decreased and EE increased. For a fixed drug carrier, an increase in the particle size yielded a decrease in the BBB permeability coefficient of the anti-HIV agents. Moreover, enhancement in the BBB permeability was on the carrier order of PBCA > MMA-SPM > SLNs for D4T, and for DLV and SQV, the order became PBCA > SLNs > MMA-SPM. PBCA, MMA-SPM, and SLNs were efficacious carriers of D4T, DLV, and SQV to meliorate BBB permeability by 3–16 folds, indicating the clinical potential of the present NP formulations for the AIDS treatment.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, ,