Article ID Journal Published Year Pages File Type
2506946 International Journal of Pharmaceutics 2006 10 Pages PDF
Abstract

The objective of this study was to demonstrate the potential of the application of a short-term iontophoresis on the topical delivery of lidocaine hydrochloride from a microemulsion-based system. Five- and 10-min durations of anodal iontophoresis applied onto porcine skin were examined in combination with a microemulsion containing 2.5% lidocaine hydrochloride. A similar combination (10-min iontophoresis with microemulsion in the anodal electrode) was also examined in vivo in a rat model. It was shown in vitro that by combining microemulsion application with a 10-min iontophoresis of 1.13 mA/cm2 electric current density, a significantly increased flux was obtained compared with a combination of aqueous drug solution with the same iontophoresis protocol. In vivo studies revealed that 57.71 ± 18.65 and 18.43 ± 9.17 μg cm−2 were reached in the epidermis and dermis, respectively, at t = 30 min of microemulsion application, when iontophoresis was applied for 10 min. In contrast, the application of aqueous solution-iontophoresis resulted in a relatively lower drug accumulation (21.44 ± 10.42 and 5.30 ± 2.25 μg cm−2 in the epidermis and dermis, respectively, at t = 30) with more rapid clearance of the drug from the skin. Ten-minute application of a low-current electric field on a new topical microemulsion appears to make significant changes in skin permeability. The potential advantages of this procedure include significantly increased flux, accumulation of a large skin drug depot, short lag times, reduced irritation (compared to long-term iontophoresis), simplicity and ease of compliance.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, ,