Article ID Journal Published Year Pages File Type
251208 Composite Structures 2015 12 Pages PDF
Abstract

In this paper, stochastic vibration characteristics of finite element modelled functionally gradient plates is investigated. An improved structural kinematics proposed earlier by the authors’ which assumes the cubically varying in-plane displacements and quadratically varying transverse displacement across the thickness of the plate is applied. This theory satisfies zero transverse strains conditions at the top and bottom faces of the plate as a priori. The material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law behaviour in terms of the volume fractions of the constituents. The structural kinematics is implemented with a computationally proficient stochastic C0C0 finite element (FEM) based on the first-order perturbation technique (FOPT) to accomplish the second-order response statistics of the graded plates. Convergence and comparison studies have been performed to describe the efficiency of the present formulation, and compared the results with those available in the limited literature. Numerical results have been obtained with different system parameters, temperature rise and boundary conditions.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,