Article ID Journal Published Year Pages File Type
2512624 Biochemical Pharmacology 2013 10 Pages PDF
Abstract

The phenolic glucoside gastrodin, a main constituent of a Chinese traditional herbal medicine, has been known to display several biological and pharmacological properties. However, the role and precise molecular mechanisms explaining how gastrodin suppresses the inflammatory response in septic cardiac dysfunction are unknown. To study this, rat H9c2 cardiomyocytes were treated with gastrodin and/or lipopolysaccharide (LPS). Our results showed that gastrodin treatment strongly suppressed nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) family activation and upregulation of the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in LPS-stimulated H9c2 cardiomyocytes. Simultaneously, gastrodin obviously upregulated the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling in a dose-dependent manner. However, wortmannin, a specific PI3-K inhibitor, blocked the inhibitory effects of gastrodin on LPS-stimulated H9c2 cardiomyocytes. Furthermore, PI3-K/Akt inhibition partially abolished the inhibitory effects of gastrodin on the phosphorylation of inhibitor κB-α (IκB-α), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and activity of NF-κB. Here we report activation of the PI3-K/Akt signaling by gastrodin and that inhibition of this pathway reverses the inhibitory effects of gastrodin on NF-κB and MAPKs activation in H9c2 cardiomyocytes.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , , , , , , ,