Article ID Journal Published Year Pages File Type
2513481 Biochemical Pharmacology 2009 12 Pages PDF
Abstract

Previously, we demonstrated that Abl kinases are highly active in invasive breast cancer cell lines, and contribute to survival in response to nutrient deprivation, invasion and proliferation. To determine whether an Abl kinase inhibitor, STI571 (Gleevec; imatinib mesylate) sensitizes breast cancer cells to chemotherapeutic agents, we treated three breast cancer cell lines (BT-549, MDA-MB-231, and MDA-MB-468) that have active Abl kinases, with STI571 in combination with several conventional chemotherapeutic drugs frequently used to treat breast cancer, and assessed the effect on cell viability, proliferation, and apoptosis. We found that STI571 had synergistic effects with cisplatin in BT-549 and to some extent in MDA-MB-468 cells; synergized with camptothecin using an alternate dosing regimen in MDA-MB-231 cells; and STI571 synergistically sensitized MDA-MB-468 cells to paclitaxel and to high doses of 5-fluorouracil. Significantly, STI571 increased the ability of cisplatin to inhibit constitutive activation of PI3K/Akt in BT-549 cells, synergized with camptothecin to increase the stability of IκB in MDA-MB-231 cells, and in MDA-MB-468 cells, camptothecin and 5-fluorouracil inhibited STI571-dependent activation of STAT3. In other cell line/drug combinations, STI571 had additive or antagonistic effects, indicating that the ability of STI571 to sensitize breast cancer cells to chemotherapeutic agents is cell type-dependent. Significantly, unlike cisplatin, paclitaxel, and camptothecin, mechloroethamine was strongly antagonistic to STI571, and the effect was not cell line-dependent. Taken together, these data indicate that the cellular milieu governs the response of breast cancer cells to STI571/chemotherapeutic combination regimens, which suggests that treatment with these combinations requires individualization.

Graphical abstractSTI571 synergizes with cisplatin to inhibit proliferation (left) and induce apoptosis (right) of BT-549 breast cancer cells.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , , ,