Article ID Journal Published Year Pages File Type
2514046 Biochemical Pharmacology 2011 12 Pages PDF
Abstract

Historically, consumption of Green tea (Camellia sinensis) has been associated with health benefits against multiple diseases including cancer, atherosclerosis and cardiovascular disorders. Emerging evidence has suggested a pathogenic role for HMGB1, a newly identified “late” mediator of lethal systemic inflammation, in the aforementioned diseases. Here we demonstrated that a major ingredient of Green tea, EGCG, was internalized into HMGB1-containing LC3-positive cytoplasmic vesicles (likely autophagosomes) in macrophages, and induced HMGB1 aggregation in a time-dependent manner. Furthermore, EGCG stimulated LC3-II production and autophagosome formation, and inhibited LPS-induced HMGB1 up-regulation and extracellular release. The EGCG-mediated HMGB1 inhibitory effects were diminished by inhibition of class III phosphatidylinositol-3 kinase (with 3-methyladenine) or knockdown of an essential autophagy-regulating protein, beclin-1. Moreover, the EGCG-mediated protection against lethal sepsis was partly impaired by co-administration of an autophagy inhibitor, chloroquine. Taken together, the present study has suggested a possibility that EGCG inhibits HMGB1 release by stimulating its autophagic degradation.

Graphical abstractVia oxidation, EGCG spontaneously forms aggregation products (e.g. theasinensin), which interact with HMGB1 to form EGCG–HMGB1 complexes. These complexes are engulfed into autophagosomes, and degraded in an autophagy-dependent mechanism.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , , , , , , , ,