Article ID Journal Published Year Pages File Type
2514218 Biochemical Pharmacology 2008 18 Pages PDF
Abstract

Disorders concerning the metabolism of plasma and intracellular lipids are hallmarks of atherosclerosis. However, failures in proper control of intracellular cholesterol balance, rather than simple cholesterol overloading due to augmented uptake, could fuel atherogenesis. Therefore, the understanding of atherosclerosis-associated lipid alterations, which feed an inflammatory microenvironment in the arterial wall, requires the meticulous investigation of several aspects of lipid synthesis, uptake and export from cells. In this regard, the presence of reactive cysteines in transcription factors and key enzymes of lipid metabolism may dictate cholesterol accumulation, and therefore the progression of vascular disease. The strong inhibitory effect of cysteine-reactant anti-inflammatory cyclopentenone prostaglandins (CP-PGs) over atherosclerosis progression in vivo (LipoCardium technology) symbolizes a new concept of atherosclerosis and its treatment. Results from this laboratory and those from other research groups have unraveled a novel facet in prostaglandin research in that CP-PGs may act as redox signals that guide lipid metabolism in atherosclerosis. By modifying enzymes (e.g., HMG-CoA reductase, ACAT and cholesteryl ester hydrolases) and transcription factors (e.g., NF-κB and Keap1) involved in inflammation and lipid metabolism, CP-PGs (especially those of A-series) induce pivotal changes in glutathione and lipid metabolism that completely arrest atherosclerosis progression. Hence, pharmacological manipulation of lipid metabolism by CP-PGs may be a novel and invaluable strategy for treating atherosclerosis. Also, a better understanding of why CP-PGs do not resolve inflammation physiologically may explain many unsolved questions and yield insights into atherogenesis and its termination.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , ,