Article ID Journal Published Year Pages File Type
2514225 Biochemical Pharmacology 2008 11 Pages PDF
Abstract

The excitotoxic conopeptide ι-RXIA induces repetitive action potentials in frog motor axons and seizures upon intracranial injection into mice. We recently discovered that ι-RXIA shifts the voltage-dependence of activation of voltage-gated sodium channel NaV1.6 to a more hyperpolarized level. Here, we performed voltage-clamp experiments to examine its activity against rodent NaV1.1 through NaV1.7 co-expressed with the β1 subunit in Xenopus oocytes and NaV1.8 in dissociated mouse DRG neurons. The order of sensitivity to ι-RXIA was NaV1.6 > 1.2 > 1.7, and the remaining subtypes were insensitive. The time course of ι-RXIA-activity on NaV1.6 during exposure to different peptide concentrations were well fit by single-exponential curves that provided kobs. The plot of kobsversus [ι-RXIA] was linear, consistent with a bimolecular reaction with a Kd of ∼3 μM, close to the steady-state EC50 of ∼2 μM. ι-RXIA has an unusual residue, D-Phe, and the analog with an L-Phe instead, ι-RXIA[L-Phe44], had a two-fold lower affinity and two-fold faster off-rate than ι-RXIA on NaV1.6 and furthermore was inactive on NaV1.2. ι-RXIA induced repetitive action potentials in mouse sciatic nerve with conduction velocities of both A- and C-fibers, consistent with the presence of NaV1.6 at nodes of Ranvier as well as in unmyelinated axons. Sixteen peptides homologous to ι-RXIA have been identified from a single species of Conus, so these peptides represent a rich family of novel sodium channel-targeting ligands.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , , , , ,