Article ID Journal Published Year Pages File Type
2514431 Biochemical Pharmacology 2007 11 Pages PDF
Abstract

Cardiac hypertrophy impairs Ca2+ handling in the sarcoplasmic reticulum, thereby impairing cardiac contraction. To identify the mechanisms underlying impaired Ca2+ release from the sarcoplasmic reticulum in hypertrophic cardiomyocytes, we assessed Ca2+-dependent signaling and the phosphorylation of phospholamban, which regulates Ca2+ uptake during myocardial relaxation and is in turn regulated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and calcineurin. In cultured rat cardiomyocytes, treatment with endothelin-1, angiotensin II, and phenylephrine-induced hypertrophy and increased CaMKII autophosphorylation and calcineurin expression. The calcineurin level reached its maximum at 72 h and remained elevated for at least 96 h after endothelin-1 or angiotensin II treatment. By contrast, CaMKII autophosphorylation, phospholamban phosphorylation, and caffeine-induced Ca2+ mobilization all peaked 48 h after these treatments. By 96 h after treatment, CaMKII autophosphorylation and phospholamban phosphorylation had returned to baseline, and caffeine-induced Ca2+ mobilization was impaired relative to baseline. A similar biphasic change was observed in dystrophin levels in endothelin-1-induced hypertrophic cardiomyocytes, and treatment with the novel CaM antagonists DY-9760e and DY-9836 significantly inhibited the hypertrophy-induced dystrophin breakdown. Taken together, the abnormal Ca2+ regulation in cardiomyocytes following hypertrophy is in part mediated by an imbalance in calcineurin and CaMKII activities, which leads to abnormal phospholamban activity.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , , , , ,