Article ID Journal Published Year Pages File Type
2515006 Biochemical Pharmacology 2007 6 Pages PDF
Abstract

Recent studies have implicated the involvement of Ca2+-dependent mechanisms, in particular calcium/calmodulin-dependent protein kinase II (CaM kinase II) in nicotine-induced antinociception using the tail-flick test. The spinal cord was suggested as a possible site of this involvement. The present study was undertaken to investigate the hypothesis that similar mechanisms exist for nicotine-induced antinociception in the hot-plate test, a response thought to be centrally mediated. In order to assess these mechanisms, i.c.v. administered CaM kinase II inhibitors were evaluated for their effects on antinociception produced by either i.c.v. or s.c. administration of nicotine in both tests. In addition, nicotine's analgesic effects were tested in mice lacking half of their CaM kinase II (CaM kinase II heterozygous) and compare it to their wild-type counterparts. Our results showed that although structurally unrelated CaM kinase II inhibitors blocked nicotine's effects in the tail-flick test in a dose-related manner, they failed to block the hot-plate responses. In addition, the antinociceptive effects of systemic nicotine in the tail-flick but not the hot-plate test were significantly reduced in CaM kinase II heterozygous mice. These observations indicate that in contrast to the tail-flick response, the mechanism of nicotine-induced antinociception in the hot-plate test is not mediated primarily via CaM kinase II-dependent mechanisms at the supraspinal level.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
,