Article ID Journal Published Year Pages File Type
2515101 Biochemical Pharmacology 2006 17 Pages PDF
Abstract

Although inflammation has long been known as a localized protective reaction of tissue to irritation, injury, or infection, characterized by pain, redness, swelling, and sometimes loss of function, there has been a new realization about its role in a wide variety of diseases, including cancer. While acute inflammation is a part of the defense response, chronic inflammation can lead to cancer, diabetes, cardiovascular, pulmonary, and neurological diseases. Several pro-inflammatory gene products have been identified that mediate a critical role in suppression of apoptosis, proliferation, angiogenesis, invasion, and metastasis. Among these gene products are TNF and members of its superfamily, IL-1α, IL-1β, IL-6, IL-8, IL-18, chemokines, MMP-9, VEGF, COX-2, and 5-LOX. The expression of all these genes are mainly regulated by the transcription factor NF-κB, which is constitutively active in most tumors and is induced by carcinogens (such as cigarette smoke), tumor promoters, carcinogenic viral proteins (HIV-tat, HIV-nef, HIV-vpr, KHSV, EBV-LMP1, HTLV1-tax, HPV, HCV, and HBV), chemotherapeutic agents, and γ-irradiation. These observations imply that anti-inflammatory agents that suppress NF-κB or NF-κB-regulated products should have a potential in both the prevention and treatment of cancer. The current review describes in detail the critical link between inflammation and cancer.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , ,