Article ID Journal Published Year Pages File Type
252352 Composite Structures 2012 7 Pages PDF
Abstract

The compressive post-buckling behavior of composite laminates containing embedded delamination with arbitrary shape is investigated analytically. For modeling the embedded delamination, the laminate is divided into three smaller regions. The higher order shear deformation theory is implemented and the formulation is based on the Rayleigh–Ritz approximation technique by the application of the simple/complete polynomial series for each region. The nonlinear equilibrium equations, which are achieved through the application of the principle of Minimum Potential Energy, are solved by employing the Newton–Raphson iterative procedure. Some interesting results are obtained and compared with those achieved by the finite element method of analysis using ANSYS commercial software. A good agreement is seen to exist between the results. This is while for a given level of accuracy in the results, ANSYS requires a markedly larger number of degrees of freedom compared to that needed by the developed method. Moreover, a considerable reduction in the load carrying capacity of laminate is noticed due to the presence of delamination.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,