Article ID Journal Published Year Pages File Type
25348 Journal of Biotechnology 2006 11 Pages PDF
Abstract

Metagenomes of uncultured microorganisms represent a sheer unlimited resource for discovery of novel biocatalysts. Here, we report on the biochemical characterisation of a novel, soil metagenome-derived cellulase (endoglucanase), Cel5A. The deduced amino acid sequence of Cel5A was similar to a family 5, single domain cellulase with no distinct cellulose binding domain from Cellvibrio mixtus. The 1092 bp ORF encoding Cel5A was overexpressed in Escherichia coli and the corresponding 42.1 kDa protein purified using three-step chromatography. The recombinant Cel5A protein was highly active against soluble cellulose substrates containing β-1,4 linkages, such as lichenan and barley β-glucan, and not active against insoluble cellulose. Glucose was not among the initial hydrolysis products, indicating an endo mode of action. Cel5A displayed a wide range of pH activity with a maximum at pH 6.5 and at least 60% activity at pH 5.5 and 9.0. The enzyme was highly stable at 40 °C for up to 11 days, and retained 86–87% activity after incubation with 3 M NaCl, 3 M RbCl or 4 M KCl for 20 h. Cel5A was also active in the presence of diverse divalent cations, detergents and EDTA. This highly stable, salt and pH tolerant cellulase is an ideal candidate for industrial applications.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,