Article ID Journal Published Year Pages File Type
2539 Acta Biomaterialia 2010 10 Pages PDF
Abstract

Bone mineral is a multi-substituted calcium phosphate. One of these ion substitutions, strontium, has been proven to increase bone strength and decrease bone resorption. Biomimetics is a potential way to prepare surfaces that provide a favorable bone tissue response, thus enhancing the fixation between bone and implants. Here we prepared double-layered strontium-substituted apatite and titanium dioxide coatings on titanium substrates via mimicking bone mineralization. Morphology, crystallinity, surface chemistry and composition of Sr-substituted coatings formed via biomimetic coating deposition on crystalline titanium oxide substrates were studied as functions of soaking temperature and time in phosphate buffer solutions with different Sr ion concentration. The morphology of the biomimetic apatite changed from plate-like for the pure HA to sphere-like for the Sr ion substituted. Surface analysis results showed that 10–33% of Ca ions in the apatite have been substituted by Sr ions, and that the Sr ions were chemically bonded with apatite and successfully incorporated into the structure of apatite.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,