Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
25598 | Journal of Biotechnology | 2006 | 9 Pages |
A novel mesoporous silica material was synthesized via a silicate salt route in the presence of polyvinyl alcohol as the structure-directing agent under acidic conditions. The material was functionalized and employed as the supports (LPS-1 and LPS-2) for immobilizing triacylglycerol lipase from porcine pancreas (PPL). Not only they had a good thermal stability and reusability but also the activity recovery of LPS-1 and LPS-2 reached to 69% and 76%, respectively. The optimal pH and temperature region of the LPS supports immobilized PPL for hydrolysis of olive oil were at 8.0 and 55–60 °C. Kinetic parameters such as maximum velocity (Vmax) and the Michaelis constant (Km) were determined for the free and the immobilized lipase and LPS-2 immobilized PPL had the highest catalytic efficiency in the three. Meanwhile, the LPS supports exhibited many advantages than small porous materials for immobilizing PPL.