Article ID Journal Published Year Pages File Type
2563370 Pharmacology & Therapeutics 2012 13 Pages PDF
Abstract

Hypoxia inducible factor (HIF) is an oxygen-sensitive transcription factor that enables aerobic organisms to adapt to hypoxia. This is achieved through the transcriptional activation of up to 200 genes, many of which are critical to cell survival. Under conditions of normoxia, the hydroxylation of HIF by prolyl hydroxylase domain-containing (PHD) enzymes targets it for polyubiquitination and proteosomal degradation by the von Hippel–Lindau protein (VHL). However, under hypoxic conditions, PHD activity is inhibited, thereby allowing HIF to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Experimental studies suggest that HIF may act as a mediator of ischemic preconditioning, and that the genetic or pharmacological stabilization of HIF under normoxic conditions, may protect the heart against the detrimental effects of acute ischemia–reperfusion injury. The mechanisms underlying the cardioprotective effect of HIF are unclear, but it may be attributed to the transcriptional activation of genes associated with cardioprotection such as erythropoietin, heme oxygenase-1, and inducible nitric oxide synthase or it may be due to reprogramming of cell metabolism. In this review article, we highlight the role of HIF in mediating both adaptive and pathological processes in the heart, as well as focusing on the therapeutic potential of the HIF-signaling pathway as a target for cardioprotection.

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, ,