Article ID Journal Published Year Pages File Type
25674 Journal of Biotechnology 2006 12 Pages PDF
Abstract

Contemporary phytase research is primarily concerned with ameliorating the problem of inadequate digestion of inositol hexakisphosphate (phytate; InsP6) in monogastric farm animal feed, so as to reduce the pollution that results from the high phosphate content of the manure. In the current study we pursue a new, safe and cost-effective solution. We demonstrate that the rate of hydrolysis of InsP6 by recombinant avian MINPP (0.7 μmol/mg protein/min) defines it as by far the most active phytase found to date in any animal cell (the corresponding activity of recombinant mammalian MINPP is only 0.006 μmol/mg protein/min). Although avian MINPP has less than 20% sequence identity with microbial phytases, we create a homology model of MINPP in which it is predicted that the structure of the phytase active site is well-conserved. This model is validated by site-directed mutagenesis and by use of a substrate analogue, scyllo-InsP6, which we demonstrate is only a weak MINPP substrate. In a model chicken cell line, we overexpressed a mutant form of MINPP that is secretion-competent. This version of the enzyme was actively secreted without affecting either cell viability or the cellular levels of any inositol phosphates. Our studies offer a genetic strategy for greatly improving dietary InsP6 digestion in poultry.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,