Article ID Journal Published Year Pages File Type
25715 Journal of Biotechnology 2006 13 Pages PDF
Abstract

The hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 harbors a structurally novel, Type III Rubisco (RbcTk). In terms of protein engineering of Rubiscos, the enzyme may provide an alternative target to the conventional Type I and Type II enzymes. With a future aim to improve the catalytic properties of RbcTk, here we examined whether or not the enzyme could support growth of a mesophilic organism dependent on CO2 fixation. Via double-crossover homologous recombination, we first deleted three Rubisco genes present on the chromosome of the photosynthetic mesophile Rhodopseudomonas palustris No. 7. The mutant strain (Δ3) could neither grow under photoautotrophic nor photoheterotrophic conditions. We introduced the rbcTk gene into strain Δ3 either on a plasmid, or by integrating the gene onto the chromosome. The two transformant strains harboring rbcTk displayed growth under photoautotrophic and photoheterotrophic conditions, both dependent on CO2 fixation. Specific growth rates and Rubisco activity levels were compared under photoheterotrophic conditions among the two transformants and the wild-type strain. We observed that the levels of Rubisco activity in the respective cell-free extracts correlated well with the specific growth rates. Immunoprecipitation experiments revealed that Rubisco activity detected in the transformants was derived solely from RbcTk. These results demonstrated that the Type III RbcTk from a hyperthermophile could support CO2 fixation in a mesophilic organism, and that the specific growth rate of the transformant can be used as a convenient parameter for selection of engineered proteins with improved Rubisco activity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,