Article ID Journal Published Year Pages File Type
270360 Fire Safety Journal 2009 13 Pages PDF
Abstract

Simplified, rational, and practical models that account for the effect of elevated temperature on concrete and steel properties are needed. These models will enable engineers to design and assess reinforced concrete (RC) structures to satisfy specific fire performance criteria. This paper introduces a simple method that predicts the flexural and axial behaviour of RC sections during exposure to elevated temperatures. The method is based on using finite difference analysis to estimate the temperature distribution within a concrete section and a modified version of the well-known sectional analysis approach to predict the axial and/or flexural behaviour. A rational approach is proposed to convert the two-dimensional temperature distribution to a one-dimensional distribution. This approach converts a complex problem to a simplified one and thus enables engineers to better understand the behaviour and have higher confidence in the results. The predictions of the proposed method are validated using experimental and analytical studies by others. Additional tests are needed to further validate and improve the proposed method.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,