Article ID Journal Published Year Pages File Type
27158 Journal of Photochemistry and Photobiology A: Chemistry 2010 5 Pages PDF
Abstract

Spectroscopic studies on benzo[b]fluorenone (BF) solvatochromism in several aprotic and alcoholic solvents have been performed to investigate the fluorescence quenching by hydrogen bonding and proposed a weaker ability to form intermolecular hydrogen bond of BF than fluorenone (FN). In this work, the time-dependent density functional theory (TD-DFT) method was used to study the excited-state hydrogen bonding of both FN and BF in ethanol (EtOH) solvent. As a result, it is demonstrated by our theoretical calculations that the hydrogen bond of BF–EtOH complex is almost identical with that of FN–EtOH. Moreover, the fluorescence quantum yields of FN and BF in the alcoholic solvent is efficiently dependent on the energy gap between the lowest excited singlet state (fluorescent state) and ground state, which can be used to explain the fluorescence quenching by the excited-state hydrogen bond strengthening.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,