Article ID Journal Published Year Pages File Type
27265 Journal of Photochemistry and Photobiology A: Chemistry 2012 10 Pages PDF
Abstract

Titanium dioxide-multiwalled carbon nanotube (denoted as TiO2–CNT) nanocomposites with a novel rice-grains nanostructure are synthesized by electrospinning and subsequent high temperature sintering. The rice grain-shaped TiO2 is single crystalline with a large surface area and the single crystallinity is retained in the TiO2–CNT composite as well. At very low CNT loadings (0.1–0.3 wt% of TiO2), the rice grain shape remains unchanged while at high CNT concentrations (8 wt%), the morphology distorts with CNTs sticking out of the rice-grain shape. The optimum concentration of CNTs in the TiO2 matrix for best performance in dye-sensitized solar cells (DSCs) is found to be 0.2 wt%, which shows a 32% enhancement in the energy conversion efficiency. The electrochemical impedance spectroscopy (EIS) and the incident photon-to-electron conversion efficiency (IPCE) measurements show that the charge transfer and collection are improved by the incorporation of CNTs into the rice grain-shaped TiO2 network. We believe that this facile one-pot method for the synthesis of the rice-grain shaped TiO2–CNT composites with high surface area and single crystallinity offers an attractive means for the mass-scale fabrication of the nanostructures for DSCs since electrospinning is a simple, cost-effective and scalable means for the commercial scale fabrication of one-dimensional nanostructures.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► TiO2–CNT composites with the novel morphology of rice grains. ► The optimum concentration of CNTs in TiO2 matrix for best DSC performance is 0.2 wt%. ► The efficiency of DSCs is increased by ∼30% with the incorporation of 0.2 wt% CNTs.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,