Article ID Journal Published Year Pages File Type
274589 HBRC Journal 2016 12 Pages PDF
Abstract

This paper represents the finite element results for the local buckling of tapered plate girders subjected to combine pure bending and shear stresses. An idealized model is developed representing the loading of the tapered panel that generates uniform normal stresses due to flexure, or uniform and constant shear stresses in the case of shear. Eigen-value analysis was performed for several tapered web plate girders that have different geometric parameters. A parametric study is made to reduce the FE model size showing the effect of decreasing the tapered panel adjacent straight panels, maintaining the same result accuracy as a complete girder model. The combined buckling capacity of bending and shear is determined by applying all possible load pattern combinations, together with different interaction ratios. An analysis study is presented to investigate the effect of the tapering angle on the combined bending–shear capacity of the girder. The study also includes the effect of the flange and web slenderness on the local buckling of the girder. Considering residual stresses as part of the loading stresses, the analysis procedure is repeated for some cases, and the effect of combining of the residual stresses together with the external loads is found. Empirical approximate formulae are given to estimate the combined flexure–shear buckling resistance of the tapered girder safely.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,