Article ID Journal Published Year Pages File Type
2775715 Experimental and Molecular Pathology 2008 8 Pages PDF
Abstract

Activated microglia can release a variety of proinflammatory cytokines that play a crucial role in the pathogenesis of multiple sclerosis (MS). IL-23, a novel proinflammatory cytokine, is required for the induction of experimental autoimmune encephalomyelitis. Previously we demonstrated that IL-23 is expressed in MS lesions and that microglia are one cellular source of IL-23 in MS patients. In the present study we investigated the inducible expression and regulation of p19, a key subunit of IL-23, in human microglia. We demonstrated the inducible expression of IL-23p19 by lipopolysaccharide-stimulated microglial cells. Using signaling pathway-specific inhibitors, we showed that blocking p38 MAP kinase or NF-κB signaling pathway significantly reduced p19 expression in microglia. The regulatory role of p38 MAP kinase in p19 expression was further confirmed by decreased expression in microglia transduced with dominant-negative p38. We concluded that the p38 MAP kinase and NF-κB signaling pathways play an important role in regulation of IL-23p19 expression on human microglia, and are thus potential therapeutic targets in the treatment of MS.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Clinical Biochemistry
Authors
, , , , , ,