Article ID Journal Published Year Pages File Type
277588 International Journal of Solids and Structures 2014 7 Pages PDF
Abstract

This paper develops a new peridynamic state based model to represent the bending of an Euler–Bernoulli beam. This model is non-ordinary and derived from the concept of a rotational spring between bonds. While multiple peridynamic material models capture the behavior of solid materials, this is the first 1D state based peridynamic model to resist bending. For sufficiently homogeneous and differentiable displacements, the model is shown to be equivalent to Eringen’s nonlocal elasticity. As the peridynamic horizon approaches 0, it reduces to the classical Euler–Bernoulli beam equations. Simple test cases demonstrate the model’s performance.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,