Article ID Journal Published Year Pages File Type
277604 International Journal of Solids and Structures 2014 12 Pages PDF
Abstract

The propagation of a semi-infinite line defect, contained in an infinite square-cell lattice is considered. The defect is composed of particles lighter than those in the ambient lattice and it is assumed this defect propagates with constant speed. Dispersion properties of the lattice are related to waves generated by the propagating defect. In order to determine these properties, the Wiener–Hopf technique is applied. Additional features, related to localisation along the defect are also identified. Analysis of the dispersion relations for this lattice, from the kernel function inside the Wiener–Hopf equation, is carried out. The solution of the Wiener–Hopf equation is presented for the case when an external load is applied corresponding to an energy flux at infinity.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,