Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
277694 | International Journal of Solids and Structures | 2014 | 8 Pages |
A three-dimensional analysis is performed for an infinite transversely isotropic elastic body containing an insulated rigid sheet-like inclusion (an anticrack) in the isotropy plane under a remote perpendicularly uniform heat flow. A general solution scheme is presented for the resulting boundary-value problems. Accurate results are obtained by constructing suitable potential solutions and reducing the thermal problem to a mechanical analog for the corresponding isotropic problem. The governing boundary integral equation for a planar anticrack of arbitrary shape is obtained in terms of a normal stress discontinuity. As an illustration, a complete solution for a rigid circular inclusion is obtained in terms of elementary functions and analyzed. This solution is compared with that corresponding to a penny-shaped crack problem.