Article ID Journal Published Year Pages File Type
278291 International Journal of Solids and Structures 2012 7 Pages PDF
Abstract

Static and dynamic problems for the elastic plates and membranes periodically perforated by holes of different shapes are solved using the combination of the singular perturbation technique and the multi-scale asymptotic homogenization method. The problems of bending and vibration of perforated plates are considered. Using the asymptotic homogenization method the original boundary-value problems are reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. In the present paper the perforated plates with large holes are considered, and the singular perturbation method is used to solve the pertinent unit cell problems. Matching of limiting solutions for small and large holes using the two-point Padé approximants is also accomplished, and the analytical expressions for the effective stiffnesses of perforated plates with holes of arbitrary sizes are obtained.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,